Introduction to Optical Burst and Packet Switching

Zsolt Pándi
pandi@hit.bme.hu

Department of Telecommunications
Budapest University of Technology and Economics
Outline

- Evolution of traffic and its requirements
- Answers of optical technology
- Network architecture
- Principle of OBS and OPS
- Necessary components
- Challenges and ongoing research
- Conclusions
Evolution of Traffic

- Mainly voice calls in the 80ies
 - circuit-switched demands

- Growing Internet penetration
 - increasing significance of packet switching due to expanding data traffic

- Multiservice networks
 - convergence entails traffic blending
 - data traffic to outweigh voice traffic
 - uncertain traffic distribution and behaviour
Evolution of Traffic Requirements

- Core networks
 - large capacities between nodes for ‘traffic trunks’

- Metro networks
 - transparency
 - scalability and granularity
 - flexibility and (re)configurability
Evolution of Traffic Requirements

- Metro networks
 - packet switching over circuit switched technology
 - cheap transfer → circuit switching
 - cheap processing → packet switching
 - better adaptation to packet switched traffic
Answers of Optical Technology

- Synchronous Digital Hierarchy, Synchronous Optical NETwork
 - suits voice traffic
 - provided sufficient capacities for aggregated traffic

- Real optical layer - Wavelength Division Multiplexing
 - increased concentration - increased cost-efficiency
 - issue of transparency
Answers of Optical Technology

- Automatically Switched Optical Network
 - intelligent network
 - provides large capacities on demand
 - fast reconfiguration allows for dynamic demands
 - issue of granularity and scalability
 - no statistical multiplexing gain at optical layer
Answers of Optical Technology

- Transition towards PS optical transport
 - Optical Tag Switching
 - principle similar to MPLS
 - tag equals to a label in MPLS
 - Optical Burst Switching
 - short-lived channels established for each burst
 - Optical Packet Switching
 - switching packet-by-packet
Network Architecture

- Economic issues
 - Market-driven investments
 - No killer application found yet
 - Probably suitable in a metro environment
Network Architecture

- Integration possibilities

IP router

Optical packet/burst switch
Network Architecture

- Metropolitan scenario

Access \(\rightarrow\) E/O \(\rightarrow\) X \(\rightarrow\) E/O \(\rightarrow\) Backbone
Optical Burst Switching

- Control information stored in Burst Header Cells
- BHCs transported on dedicated channels
- BHCs injected into the network Δ offset time earlier than the burst
- BHC contents
 - destination, burst size, incoming channel, Δ
- BHC to set up temporary channel w/o ack
- Bursts stored only at edge nodes
Optical Burst Switching
Optical Packet Switching

- Control information in packet header
- Packets *stored at each node* to allow for header processing
- OPS network
 - slotted or unslotted
 - packet size may vary in unslotted networks
- Slotted networks require synchronization
Optical Packet Switching
Components: OBS Node Architecture

- Core node architecture is shown (Turner)
- Edge node must also include storage (may be implemented in E)

ASE: ATM Switch Element
BP: Burst Processor
BSM: Burst Storage Manager
BSU: Burst Storage Unit
Components: OPS Node Architecture

- Generic node architecture of an unslotted network is shown (Yao, Mukherjee, Dixit)
- Contention resolution is not included here
- Slotted networks require synchronization
Components: Optical Buffer

- Single- or multistage
- Forward or feedback
- Example: single-stage feedback (Karol)
Components: Optical Switch

- Not a critical problem
- Micro-ElectroMechanical Systems based solution is available as a product
- Other solutions also exist
Components: Synchronization

- Fiber Delay Loop-based
 - n cascaded 2-by-2 switches
 - The n^{th} switch decides whether divert signal to a loop causing a delay of $1/2^n$ packet length
 - May cause severe SNR degradation
 - Wavelength converter and highly dispersive fiber
 - Utilizes chromatic dispersion
 - Limited granularity
Components: Optical Wavelength Conversion

- Current proposals based on non-linear effects
 - Kerr effects
 - Scattering effects
- Still only in laboratories
Components

- Contention resolution
 - buffering
 - wavelength conversion
 - deflection routing
 - may also be used to avoid buffering
 - limited packet/burst lifetime is necessary in asynchronous networks (timestamp, not TTL)
Challenges and Ongoing Research

- Reduce burst dropping probability
- Ensure priority for traffic
- Flow and congestion control
- Multicast traffic
- Fault-tolerant routing
- Mathematical performance evaluation
Challenges and Ongoing Research

- Fast, large port-count switch fabrics
- Wavelength converters
- Optical RAM
Conclusions

- Avoid O/E/O solutions
- Reduce the number of layers
- Push down more functionality into the optical domain

![Diagram showing WDM point-to-point currently available and OBS/OPS future]
Conclusions

- OBS
 - Incorporates advantages of CS and PS
 - Relies mainly on existing technology
 - Demonstration of feasibility is yet to come

- OPS
 - Many open problems
 - Still somewhat futuristic
Acknowledgements

- Tivadar Jakab
- Do Van Tien
- Zsolt Lakatos
- Gábor Horváth