Multiple Failure Resilience in WDM Networks

Zsolt Pándi
Dept. of Telecommunications
Budapest University of Technology and Economics
Outline

- Motivations
- On failure events
- Multiple failures
- Solution approaches
- Results
- Conclusion
Motivations

- Unpredictable demand patterns
 - Flexible resource reconfiguration is necessary
 - More intelligence appears in the network
 - Service provisioning may also benefit from the installed functions
- Applications with high-capacity short-lived real-time connection demands
 - Distributed computing
 - GRID
Motivations

- Trade-off between resource-efficiency and reliability
- Dedicated or shared scheme?
- Is it possible to guarantee connection availability with economical resource usage and simple reliability computations even in the presence of multiple failures?
On Failure Events: Sources of Failures

- Cable failure
 - Cable cut
 - Bit Error Rate threshold violation
 - Aging and/or extreme environmental conditions
 - Non-linear effects
- Node failure
 - Component failure
 - Software bug
On Failure Events: Event Taxonomy

- Independence \(P(A|B) = P(A) \)
 - Failures of two LEDs in two OXCs

- Dependence
 - Positive \(P(A|B) > P(A) \)
 - Failures of two fibers in the same duct
 - Negative \(P(A|B) < P(A) \)
 - Activation of shared backup resources
On Failure Events: Failure Models

- Two-state components
 - Independence
 - Single failures only
 - *Multiple failures*
 - Dependence
 - Multiple failures only
- Multi-state components
Multiple Failures: Sharing Conflicts

Diagram showing working and backup lightpath with nodes A, B, C, and D.
Multiple Failures: Significance

- Significance of multiple failures grows with number of components ($P_f = 0.0001$)

- Component availability has strong impact on feasible service guarantees (1000 components)
Multiple Failures: Significance

Only links are failure-prone, EU topology scaled to 1:50, 1:5, 1:1
Solution Approaches

- Dedicated backup resources
- Shared backup resources with bounds on availability
 - Lower bound on FP considering any number of failures
 - \(P_f = P(\text{at least two components fail}) \)
 - \(P_f = P(\text{working resources fail}) \times P(\text{protection resources are N/A}) \)
 - Sharing unavailability
Results: Simulation

MFP = 0.05
EU network

MFP = 0.0005
metro network

March 1, 2005 WDM Workshop 2005, Budapest
Results: Sharing Unavailability

- A backup resource becomes less likely to be available once it is shared
- \(P_f(\text{backup resource}) = P(\text{physical failure}) + P(\text{another connection activates it first}) \)
- Second term is sharing unavailability
 - \(q_s(\text{link, wavelength, connection demand}) \)
Results: Sharing Unavailability

\[q_s(e,w,CD) \]
Results: Sharing Unavailability

- Sharing unavailability threshold can be an input parameter of the CAC policy
- Limits sharing and guarantees availability of shared backup resources
Results: RWA Algorithm

- Evaluation of working and backup lightpaths
 - Disjointness of working lightpath from other working lightpaths where backup resources are shared
 - Connection availability conforms requirement \((r)\)
 - Upper bound is easy to compute
 - Admission does not violate \(q_s\) threshold
 - Upper bound is easy to compute
- A uniform constant \(q_s\) is used here
Results: Simulation

$\frac{r}{0.005}$

EU network

March 1, 2005 WDM Workshop 2005, Budapest
Results: Simulation

Conclusions

- Provisioning using single-failure resilient protection schemes might be sufficient
 - Seems acceptable at the metropolitan scale
 - Must be checked at the national scale
- It is important to deal with multiple failures under certain circumstances
 - Especially at the continental scale
 - More sophisticated protection schemes might be necessary
Conclusions

- On-line RWA algorithm that guarantees connection availability in the presence of multiple failures
- Attractive and efficient adaptation of Shared Path Protection
 - Offers gain in blocking while still fulfilling availability requirements
 - Computations remain simple
- Choice of appropriate threshold value requires further experiments